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A nonlinear approach to electrodynamics is reviewed. On imposing a nonlinear 
constraint AuA ~ = - O", together with the usual gauge-invariant electromagnetic 
field Lagrangian, it is found that the resulting equations of motion have, besides 
the photon, a static spherically symmetric extended solution which may be 
regarded as a charged particle. A magnetic dipole moment (spin) can also arise as 
a solution of the equations of motion if, as expected, it is treated as a first-order 
quantum effect. In the limit for "'small" quantum fields and pointlike charged 
particles, the quantum mechanical equivalence of the approach with the usual 
Lagrangian formulation of the electromagnetic interaction of a charged scalar 
field is heuristically shown. Moreover the possibility of constructing charged 
fermion fields from the solution having both a charge and a magnetic moment is 
illustrated. In such an approach the photon is associated with the spontaneous 
breaking of Lorentz symmetry, and the emission of soft photons does not exhibit 
any infrared divergences. 

1. I N T R O D U C T I O N  

In  o r d e r  to r e m o v e  the d i f f icu l t ies  assoc ia ted  wi th  po in t  cha rge  elec- 

t rons ,  several  years  ago D i r a c  sugges ted  tha t  e l e c t r o d y n a m i c s  shou ld  be 

bu i l t  f r o m  the classical  theory  of  the m o t i o n  of  a c o n t i n u o u s  s t r eam of  

e lec t r ic i ty  r a the r  than  the  m o t i o n  of  p o i n t  charges  (Di rac ,  1951; 1952; 

1954). ~ T h e  a p p r o a c h  was based  on  the o b s e r v a t i o n  that  gauge  i nva r i ance  

ref lec ts  the fact  tha t  the usual  e l e c t r o m a g n e t i c  field theory  involves  m o r e  

d y n a m i c a l  va r iab les  than  are  phys ica l ly  necessary .  T h e r e f o r e  a su i tab ly  

chosen  cons t r a in t  for  the e l e c t r o m a g n e t i c  f ield A~, m a y  be  used to des t roy  

gauge  i n v a r i a n c e  and  m a k e  the  supe r f luous  var iab les  acqu i r e  phys ica l  

IWe observe that Dirac initially took the electromagnetic field as proportional to the velocity 
four-vector of the electric stream and never considered particlelike solutions to his equations. 
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64 Righi  and  Venlur i  

significance and describe charged currents. In particular the constraint 
consisted in requiring the electromagnetic field to satisfy 2 

A~= _p2  (1) 

with p real. 
The above choice of constraint for the electromagnetic field can be 

motivated by considering the classical limit for a Lagrangian density f '  
describing a local charged scalar field q~(x) and the electromagnetic field 
together with their interaction. Indeed on taking 

1 2 ie ie m 2 
~:"= ~ F ~ , , - ( ~  t -  ~-A~qv)--~-~*qp (2) - ~-A~q~* ) (0~q~ + -- 

where F.. = O~A,, - O~A~, we can obtain the classical limit of ~' by setting 

cp = f e  i ' /h  = f .  e ~'/h (3) 
t,,=o ' J  J 

where S is related to the mechanical action and may in turn be expanded as 

7 so (4) 

To lowest order in h Equation (2) becomes 

F0 2 
~class. -- 4Ff~ - (O~,So+eA~,) + m  2 (5) 

and on setting the coefficient of F0 2 in the above equal to zero 

g! 2 m 2 

\ e O t ,  S o + A ~ ,  - -  e 2  (6) 

we are just imposing the Hamil ton-Jacobi  equation for a charged particle 
moving according to the Lorentz equations of motion in the field of the 
potential A.. Further we observe that Equation (6) after making the gauge 

Z O u r  met r ic  is 8~,~: p., v = 1 - 4  a n d  x 4 = ix  o. G r e e k  ind ices  r u n  f r o m  1 to 4 a n d  L a t i n  ind ices  

f r o m  1 to 3. R e p e a t e d  ind ices  are  s u m m e d  over  a n d  we  sha l l  use  un i t s  for  w h i c h  h = c = 1 

e x c e p t  in Sec t ions  1 a n d  2, w h e r e  we  d o  n o t  set  h = 1. 
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transformation 

just becomes the constraint Equation (1) with the identification/9 2 = m Z/e 2. 
Naturally this is possible to the extent that there exists a solution to the 
classical equation of motion Equation (6). 

At this point we note that instead of Equation (2) we are just left with 
the Lagrangian density 

= I E~ (7) 

with the constraint Equation (1) for the electromagnetic field, the charged 
fields having disappeared from the Lagrangian density. Clearly we have 
then achieved the aim of describing the charged particles in terms of the 
electromagnetic field itself, that is as singularities in the field as we shall 
later see. 

All our considerations will then begin from the "free" electromagnetic 
Lagrangian density Equation (7) where the electromagnetic field satisfies the 
constraint Equation (1). A further support for the choice p 2 >0 can also be 
given by examining the propagation of the solutions to the resulting 
equations of motion. Indeed on computing the normals to the characteristic 
surfaces one can verify that p2 <0 leads to acausal propagation. This is not 
surprising since according to the above heuristic procedure (0 2= m2/e2) ,  
p2 <0 would correspond to an imaginary mass and therefore a tachyon. 

In the next section we shall briefly review the solutions to the nonlinear 
equations of motion obtained from Equation (7) together with the con- 
straint Equation (1) and discuss their properties. In Section 3 we shall 
briefly discuss the equivalence of our nonlinear formulation, upon quantiza- 
tion, with the usual quantum electrodynamics. In Section 4 the relevance of 
the above nonlinear choice of gauge for the emission of soft photons is 
briefly mentioned, and lastly in Section 5 our results are summarized and 
discussed. 

2. SOLUTIONS AND PROPERTIES 

We begin this section by first exhibiting the equations of motion 
obtained from the Lagrangian density Equation (7) when the electromag- 
netic potential A~ satisfies the constraint Equation (I). Because of the 
constraint, the independent dynamical variables are A b and of course 



66 Righi and Venturi 

A 0 =(02 + A2) I/2, therefore the equations of motion are: 

A h 
aC al~ _ O,,F,~h_i_.~oO~F4 = 0 ( 8 )  

0A b 0,, 00.A h 

Let us now examine the solutions to the above nonlinear equations. 
A time-dependent solution can be obtained by setting (Nambu. 1968) 3 

A0=(O 2 + A ~ ) ' / 2 = ~ [ p ( I + A ~ / 2 0 2 + ' ' ' )  (9) 

where we assume [Ai[ (------~) is small and 02 large. On keeping terms to 
lowest order in e we obtain the "free" equation of motion and solution 
(AhF): 

OaAh2 F _  ~aObAF=O ( 1 0 )  

A v may be separated into transverse and longitudinal parts and it is 
straightforward to verify that it is the transverse part that behaves like the 
normal light wave whereas the longitudinal part is time independent. 4 

A static solution satisfying Equation (1) is given by (Righi and Venturi, 
1978a) 

F-- Xi 
Ai(x)= V0 ~- sinh g(r  )-- A~-(x) 

A4(x ) = -+- i~/p cosh g( r ) --=_+ A,~(x) 

with r =(x2)  1/2 and 

cosh g( r ) = 1 for r < r d 

=ro/r for r > r  0 

where r 0 satisfies g(r 0 )=  0 and 5 

with F~,=3 A c - 3  A c 

(II) 

(12) 

OaFJ4=-l s(r-ro)A~ (13) 
ro 

3In particular Nambu  was interested in considering the photon as the massless excitation 
arising as a result of the spontaneous breakdown of Lorentz symmetry  in analogy with the 

pion in the context of chiral symmetry.  
4That is, the transverse solution A r  F satisfies [] A F = 0  whereas for the longitudinal one A F we 
have 2 F--  00A L --0, 

5An equivalent alternative way to our solutions is to consider the Lagrangian ff = -  �88 
- -~ k( A~ + 9 ), where k( x ) may be treated as a further field variable. The equations of motion 
then are i~,F,~ = kA~ together with Equation (1). The elimination of k from the simultaneous 
equations of motion for u = n and z,=4 will of course lead to the nonlinear form Equation (8). 
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67 

W e  o b s e r v e  tha t  wi th  the a b o v e  ansa tz  E q u a t i o n  (11) one  has  F,~ = 0  

~- xir~ 0 F~Ci = i C p - ~  -- ( r - - t o )  

c o r r e s p o n d i n g  to the f ie lds  a s soc ia t ed  wi th  a " c h a r g e d  she l l "  o f  rad ius  r 0 

(ze ro  m a g n e t i c  a n d  n o n z e r o  e lec t r ic  fields).  F u r t h e r  if  we iden t i fy  the 

e lec t r ic  cha rge  e ( > 0 ) :  

e , / 4  ~" ~ - f p r  0 (14)  

a n d  fu r the r  set (see Sec t ion  1) ~fff = m / e ,  6 we o b t a i n  

r o = e2 /4~rm (15) 

w h i c h  is the  c lass ica l  cha rged  pa r t i c l e  radius .  

Befo re  e x a m i n i n g  in m o r e  deta i l  the  p rope r t i e s  o f  ou r  s ta t ic  e x t e n d e d  

so lu t i on  let us o b s e r v e  tha t  a l t h o u g h  it des t roys  gauge  i n v a r i a n c e  ou r  

c o n s t r a i n t  leads  to the ex i s tence  of  a cu r r en t  v 

i 
N~, = ~-~2 e~,t~yae~,~ooA,,3.A#3oAyOoAa (16) 

=o (17) 
ax~ 

w h i c h  is c o n s e r v e d :  

s ince  the  J a c o b i a n  of  the  four  f ields A~, wi th  respec t  to the  fou r  s p a c e - t i m e  

Clearly kA~ is a conserved current and leads to (k 4:0) a conserved "charge." The introduction 
of k(4:0) then implicitly means that we are introducing a dimensionless (for h = c = l )  
constant which we may identify with the electric charge. The case k =0 of course corresponds 
to our solution A F. In this case our constraint Equation (I) is just a choice of gauge in a 
gauge-invariant equation. 

6Let us note that with such an identification the trace of energy-momentum tensor is equal 
to m. 

7The normalization can be suitably chosen. We loosely refer to Eq. (16) as a topological current 
since unlike a Noether current it is not associated with a symmetry of the Lagrangian and is 
conserved by construction and independently of the equations of motion. This conserved 
quantity appears because of the manifold (A~ 2 = - 0 2) on which the field variables (At,) take 
their values. In particular if, for simplicity, we consider Euclidean rather than Minkowski four 
space our constraint becomes At 2 + A~ = p2 which defines a field manifold S 3 and a finite 
energy static solution is a mapping of R 3 U (oo) intO the manifold. A current such as Eq. (16) 
is related to such a mapping. 
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coordinates must vanish (they are functionally dependent). The correspond- 
ing conserved charge is 

N = - - ~  [ d 3 x  e,~l~v~e4.r~A,~3. At~O.A.rOsA ~ 
6 ~r a 

(18) 

which on substituting our ansatz, Equation (11), and solution leads to 

~ f  sinh2 g N = _ + 4  d rg '  = - + p  4 (19) 

the positive or negative signs in the above corresponding to the sign of our 
solution. Further our t ime-dependent solution is associated with N = 0. Thus 
our conserved topological charge is proportional  to the charged particle 
number  and further since this is proportional  to the charge it may be that 
charge conservation is connected to a topological conservation law. 

Let us now examine the stability 8 of our static spherically symmetric 
solution A~. The energy-momentum tensor is given by 

(20) 

and the Hamil tonian H is 

+E2)-AoV-E] (21) 

where Fcd =-- Bbebc d, Fa4 ~ - -  iE a and E and B are of course the electric and 
magnetic fields. 

On substituting our ansatz Equation (11) into H we obtain 

[1 d coshg) 2 3(r-ro)cosh2g ] H=4~rp2f r2dr (dr r o (22) 

and for a variation 3(cosh g) 

2/[ r 2 - -  3H =4~ro dr 2r~r coshg  + cosh 
dr 2 

/ ' A  
] 

- r0)cosh g/8(cosh g) g - -  ro 3( r  

(23) 

8Let us observe that because of the structure of E the usual instability theorems based on 
2 scaling are evaded even without adding to ? quartic terms such as -(e-/8)[(F~,~F,~) - 

2(F~,,F,~) 2 ] which give a positive definite contribution to the Hamiltonian. 
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which is zero in virtue of the equations of motion. The second order 
variation is given by 

d coshg)]24  3(r ro- ro) [3(cosh g)]2} (24) 

which is positive. Thus our solution is stable with respect to static spheri- 
cally symmetric perturbations (Righi and Venturi, 1978b). 9 

The stability of our solution with respect to general time-dependent 
infinitesimal fluctuations (Righi and Venturi, 1978a) may be checked by 
solving for the eigenfrequencies of the small perturbations, the solution then 
being stable or not depending on whether the eigenfrequencies are real or 
complex. Let us then set 

A. = A~ + a.  (25) 

where a~ is the small perturbation and A~ is given by ~~ Equations (11) and 
(12). 

Upon substituting into Equations (1) and (8) and just keeping terms to 
lowest order in the perturbation we obtain 

a0cosh g =  aixi sinhg (26) 
r 

and 

a b O~f~b + txb(tanh g)0 .L  4 = -- - - 6 ( r  -- ro) 
r r 

(27) 

respectively, where f ~  -- 3~aa - Oaa~. On taking the divergence of both sides 
of Equation (27) we also get 

ab ~b~4f4b q- ~b[ iX~b (tanh g )~afaa] = -- ~b[ ~ -~( r - r~ (28) 

which is the equivalent of the current conservation condition. 
Since one is interested in whether the perturbation, which is required to 

be well behaved (small) in all space, remains small or increases in time, the 
time dependence of a given vibrational mode is represented by an exponen- 

9It is further straightforward to check from Equation (20) and our spherical solution that the 
gradient of the stress tensor in our case is zero in contrast with the case of the Lorentz 

electron. 
1~ shall henceforth consider the solution with the plus sign in the latter of Equations (l l) .  
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tial. Further. since our solution is spherically symmetric, it is convement to 
expand a in terms of vector spherical harmonics Yj.r One then sets 

a =  ei~tE F/(r)Yj,t . . ,(P) (29) 
/ 

where in the sum l takes the values l = j + 1, j ,  j - 1. 
On substituting for a into Equations (27) and (28) and using Equation 

(26) we obtain the following: 

7 ~ r r  r 2 -- �9 . drr) j ( j + l )  Fo+~a2Fo r r o 1='o (30) 

[ 1  d 2 d  1 ] d j  
7 ~ (  r ~ ) - - -  ~, +,~,  +~ ~+ - o_,_ ( ~ - - ) r .  r 

x Y~ ~ + F + , ~  - -  F , ~  - -  + , , . ,2F+ 
_ r r 

d -~ ,oo+(~-~)  ~ o ~ t a ~ _ . - o + ~ t a n h ~  
+ 

• -drr  r ~rr - j ( j + l )  ~,a~( tanhg)F~_- i~oa+( tanhg)  

dF= a + ( j + 2 )  ( j - - l )  ] 8(r - -ro)  
• ~" dr • F + a + - -  F_a_ = r r r 

F+ 

(31)  

[~ ~r2--~-~;-,,;]~ -o [ ~ ~ r ,  ~r, ~r+ ~;+l,r ] 

/ ; , t  1 • Y, ~ - r -  a_+ + F+a+  - -  F _ a _  + ~2F_ 
_+ r r 

- i~oa_ ~r + - Y , ~ + ( t a n h g ) F + _ - a _ ( t a n h g )  
r + - 

~ [~ ~r (r~r t-5,/,  +"] ~ o_+'tanh.'~'-- ~o-t~a~ ~' 

• - = - - a + + F + a + - -  F_a_  
_ r r r 

F _  

(32) 
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[ 2  d ( t a n h g ) + ( t a n h g ) d  ] (tanh g)  + drr drr + iw 

{[ld • r 2 d )  - + -_~ ~ d r (  -~j( j  1)] ~ a  , ( t anhg)F~  

--iw a + ~ + F + a + - -  F a _ - -  
- r r 

{~  ~-d [F+_a(r-r~ ]+ F+3(r-r~ ( j + 2 )  
- 0~+  - -  

Ot -+ a r  r r r 

- F- 3 (r -  r~ ( J -  l~) r (33) 

where 

a+ = - (  2 j - ~ ) ' J + l  I/2 

and 

~_~,--F~, ~--F0 

Beating in mind that the solutions for a must be less than A" for all r we 
first obtain the solution for the small fluctuations inside the "shell" (r < r0) 
and then observe that it will vary continuously from the solution for r < r 0 
to that for r > r  o, whereas its derivative may be discontinuous. From 
Equations (30)-(33) we then get that 

Fo( r ) = - Fo( ro)rowjj( wr< )nj( wr> ) (34) 

where jj and nj are the spherical Bessel and Neumann functions, respec- 
tively, and r< (r>)  is the lesser (greater) of r and r 0. It is then immediate to 
see that the above solution, which leads to an eigenvalue condition for w, 
excludes complex values of w; otherwise it would "explode" as r ~ oo. 

Further we have for all r 

F+ = F_ = 0  (35) 

which implies that fluctuations of the above type are not compatible with 
the constraints and the equations of motion. 



72 Righi and Venturi 

We may then deduce that small, t ime-dependent perturbations around 
our classical solution are either not allowed or are associated with real 
eigenfrequencies, thus implying its stability. We feel such an analysis of 
stability to be equivalent to the search for the so-called "run-away" solu- 
tions in classical electrodynamics, stability implying their absence. 

As we have noted, our solution is associated with a zero magnetic and a 
nonzero electric fields. Since a static magnetic moment  (spin) is expected to 
be a small correction [O(h)] to our solution, let us modify our ansatz 
Equation (11) so as to allow for a nonzero magnetic field: 

1 
A,(x) = (-O-~ sinh g ( r )  + -~ i j kd~xkh f ( r )=- -  A',C(x) (36) 

leaving A~ unchanged. In the above we have introduced another direction, 
besides that of x, which is represented by some unit axial vector d which will 
be associated with the spin orientation. We further observe that the above 
ansatz satisfies our constraint to O(h 2). 

On substituting Equation (36) into our equations of motion and 
keeping terms to lowest order in h we get Equation (27) with au replaced by 
Eukd jxkh f ( r ) ,  which leads to 

d 2 f  + 4 d f  _ - f ( ro )  6 ( r _ r o  ) (37) 
dr 2 r dr r o 

and for r > r 0 a solution to the above is given by ~1 

1 
F( r ) - - -  (38) 

4rr~-p r 3 

which on setting 7~-= m / e  corresponds to the field of a magnetic dipole 
( e h / 2  m )d. Some motivation can also be given for associating a gyromagnetic 
ratio g of 2 with the above solution (Righi and Venturi, 1979a). 

As we have seen, our nonlinear equations of motion have two solu- 
tions: a t ime-dependent one associated with "small" (with respect to (-if) 
fields corresponding to photons, and a "large" static one associated with 
charged particles (electrons). Further, on treating a magnetic dipole moment  
as a first-order quantum effect, we find that it also can arise as a solution to 
our equations of motion. Because of our constraint we also have a conserved 
topological current whose associated conserved charge is proportional to the 
charged particle number. Lastly we remember  the stability of our extended- 
particle-like solution with respect to small perturbations. 

it Naturally f multiplied by a constant is also a solution to Equation (37). 
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3. QUANTIZATION AND CHARGED FIELD OPERATORS 

Having exhibited our solutions and their properties we may now 
proceed by quantizing and constructing the charged-field operators. Because 
of our constraint Equation (1) the independent dynamical variables are the 
A i with conjugate momenta iF4i and satisfy the canonical equal time 
commutation relations 

[Ai(x, t), F4j(y, t)] = 8 i j63(x -y )  (39) 

which leads to the following commutator for the free-field solutions A F= 
A~ (+) + AF(-): 

( OiOj) l d3k ik.(x-,,) 
[a~(+'(x),A~(-'(y)]= a,,- 27 (-~)3 f 5~o e " 

=(SU--z)iA(+)(x--Y) (40) 

where k~ = k 2. We remark that it is only the transverse part 4 of the free field 
that is quantized and that the other free-field commutation relations can be 
obtained from Equation (40). We may now discuss the construction of the 
charged-particle operator (Righi and Venturi, 1979b). An operator 9~ which 
creates a charged particle as given by Equation (11) m must have the 
following properties: 

[Ai(y, t),  cp(x, t)] = q~(x, t )A~'(y-x)  (41) 

[r4i(y, t), ~(x,  t)] = 9~(x, t )F4~(y-  x) (42) 

and we observe that the right-hand side of the above equations vanishes for 
lY - xl < ro" We shall generally consider lY - x[ >> r 0, or equivalently r 0 ~ 0. 

A suitable expression for 9~ satisfying the above commutation relations 
is given by 

w(x, t)= limc~:exp{(l+ro2a2)fd3n[Faj('l+x,t)A;(n) 
ro~0  

- Aj(~I +x,t)FZj(71)] } " 

- l imc~fp:exp - i ( l + r 0 2 ~  2) do (F,.A.-A~F;~) : 
ro~0  
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where c is a constant we shall determine and o and dou are a general 
spacelike surface and element of surface, respectively. 

Having now constructed the charged particle fields we may obtain the 
electromagnetic current density,.&, which we assume is given by 

+(x)= -i~*(~)~(x) (44) 

We evaluate it by using Equation (43) and 

O.:eA'=OuA:eA'-[O.A(+),A ( ) ] 'e  A. (45) 

: e A : . e B : z e [ A l ~ , B  I )]:eA +B. (46) 

which are true if [0~,A {+), A {-I] and [A I+), B ~-)] are c numbers. We shall use 
Equation (40) whenever a commutator between positive and negative 
frequency terms is necessary and keep terms to lowest order in e [see 
Equation (9) for example] only. Further, whenever necessary the integrals 
we encounter in our determination of the current are approximately 
evaluated by setting 12 

a :  = O(r - "o) 

A~ = i ~ - [ 1 -  O(r -- ro) ] (47) 

with r 0 -.0. This implies that we are considering the point limit of our 
classical solution. 

According to the above considerations for example we find 

cpt(x )~'4 cp ( x ) ~  - 2c2p2 f d3n a4Aj( ~ + x, t )F(  ( n ) 

and similarly 

= -2c2pfd% a.,<,(n +x, t)A](rl) 

-iOj%(x)~O'~ro ' 

T ,~ r~.(~)-~o~r~(x)7 

(48) 

(49) 

IZAs we have mentioned we shall take the solution with positive sign for A 4. Further we 
observe that A~- is imaginary, as is necessary to maintain our constraint Equation (l). This is 
not a difficulty since the observable quantifies are the F~ which are real. 
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which allows us to set 

3 - 3  24 'n'2 (50) 
c2=-~e  (roP) e 4 

Let us observe that, as expected with our constraint [Equation (1)], the 
current is associated with the longitudinal degrees of freedom for the 
electromagnetic field. 

With the above expression for the current we can obtain the commuta- 
tor 

4*rr~ i33(x--y)q~(y, t) 
e 

(51) 

which on using Equation (14) is the expected result for a charged field. 
Further on using 

: e  A .  : e B :  : e [ A , B I : e B :  . e  A : (52) 

where [A, B] is a c number we can easily verify that 

[qo(x, t),qo(y, t)] = 0  

[q~t(x, t),  q0(y, t)] : 0 (53) 

which are the expected commutators for Bose operators. We now observe 
that we have the expected canonical commutation relations for the charged 
scalar field qo since the remaining commutator between cp and qbt( --= 0oqO t) 

[qo(y, t), q;t(x, t)] = i 3 3 ( x - y )  (54) 

is implied by Equation (51). 
The same procedure and approximations may also be employed to 

determine the equations of motion for the scalar field, obtaining 

+ 40:)cofd3,[adF, j(n 

(55) 

which is compatible with Equation (49) and current conservation. 
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In order to understand the above results it is instructive to compare 
them with the equations of motion obtained from the usual Lagrangian 
density 12', Equation (2), for a charged scalar field interacting with the 
electromagnetic field on employing the constraint Equation (1) and making 
the usual approximation (e small). For the equation of the electromagnetic 
field one obtains 

A4( 8,~Fai - ejs ) = A , (  O,~F~, 4 - ej4 ) (56) 

which on comparing terms of O(e) and O(e 2) leads to 

OorFc~ 4 z e j  4 ( 5 7 )  

in agreement with Equation (49)�9 For the scalar field the equation of motion 
to lowest order in e is given by 

(5s) 

in agreement with Equation (55), and we note that the eventual presence of 
constant potential terms acting on the charged fields need not be considered 
since they can be eliminated through a redefinition of the charged particle 
momentum. 

In the previous section we have shown that a magnetic dipole moment 
solution arises naturally as a small [O(h)] perturbation to the charged 
particle solution of our equations of motion. The existence of such a 
solution is closely associated with the introduction of an additional direc- 
tion in space, which is expected to be related to the spin orientation. Let us 
now illustrate how the presence of this additional direction in space allows 
us to construct a field satisfying anticommutation relations (Righi and 
Venturi, 1979a). 

An operator q, which creates a charged particle as given by Equation 
(35) must have the following property: 

[A,.(y, t),  r  t)] = q~(x, t)A~C(y- x) (59) 

for ]y -x[  >> r o (or equivalently r o ~ 0) and a suitable representation for 4, is 
given by 

�9 (48qr2 ] 1/203/2 "exp{ 'rr d. A +  (1 + r020) ,j]fd3"q 
4'(x' t ) = rol0i~n~ 0 ~ - ]  2~/O 

X [ F 4 j ( r l + x , t ) A ~ ( r l ) - A j ( ~ l + x , t ) F , ~ j ( ~ l ) ] } :  (60) 
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With respect to the scalar case we note the presence of the additional 
pseudoscalar term (~r/2fff)d.A in the exponent and observe that since the 
actual construction and identification of the different spin components is 
difficult and ambiguous, we shall just briefly mention the properties of the 
above simple solution. 

On using Equation (52) we obtain for r >> r 0 

~b(x, t)4,(y, t ) :expi~rd.  ( x - y )  , ,  ~-~-y]  ~[y, t )+(x,  t) (61) 

which on taking the unit axial vector d either parallel or antiparallel to 
( x - y )  (which is equivalent to a quantization of spin) leads to 

(~b(x, t), ~b(y, t)} : 0  (62) 

which is the expected anticommutation relation. The equations satisfied by 
may be obtained in a manner analogous to that employed for the scalar 

field case and the results are essentially the same (Righi and Venturi, 
1979a). This is because on considering the point particle and weak field 
limits we expect P-" ~ and e ~ 0 and therefore the additional term in the 
exponent of q, [see equation (60)] will not contribute unless compensations 
occur, as in the case for the anticommutator Equation (61); thus a detailed 
examination of spin effects is actually precluded. 

Let us, however, end this section by mentioning that one can examine 
directly quantum fluctuations about the charged magnetic dipole solution to 
our nonlinear equations, thus bypassing the actual construction of the 
spinor fields. The effective Hamiltonian density describing the interaction 
between the small quantum fluctuations (photons) and our charged-particle 
solution and the photon Feynman propagator in our "gauge" can be 
constructed. The lowest-order effect on the magnetic moment due to the 
emission and the reabsorption of a photon can then be evaluated in the 
point particle limit and the usual value (a/27r)  for ( g - 2 ) / 2  is then 
recovered (Righi and Venturi, 1979c). 

4. QUANTUM ELECTRODYNAMICS IN A NONLINEAR 
GAUGE 

In the previous section we have given arguments for the quantum 
mechamcal equivalence of our approach with the usual quantum elec- 
trodynamics. We may now regard the latter as a theory in which the 
charged-particle solutions and their associated field operators have been 
separated from the electromagnetic field and corresponding to a sort of 
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"effective Lagrangian" approach. Let us now examine the consequences of 
our constraint Equation (1) in such a context. 

In terms of quantized fields the constraint Equation (1) implies that the 
electromagnetic field has a nonzero vacuum expectation value, this implying 
the spontaneous breaking of Lorentz symmetry, However, since for the free 
electromagnetic field Equation (1) is just a choice of gauge (Dirac, 1951, 
1952, 1954; Nambu, 1968) ~ in a perturbative approach the S-matrix ele- 
ments will just be the usual gauge-invariant and Lorentz-invariant ones 
(Nambu, 1968). 

We observe that in general the gauge is chosen opportunely depending 
on the process one wishes to consider. Let us therefore exhibit the interest of 
the choice Equation (1) for the emission of soft photons (Righi and Venturi, 
1977). The usual Lagrangian density describing photons A,, electrons ~, and 
their interaction is given by 

~2 = - iF2. ~,,, - ~.@. q~ - m~,q. + ie~7. A~, 4' (63) 

and since the electromagnetic field may be suitably redefined without 
altering the S matrix (Chisholm, 1961) we may set 

A o =  •  +~p2F2(ef  )] '/2 

A , = ~ i F ( ~  2) (64) 

where F(0)= 1 and the above clearly satisfies Equation (1). In particular let 
us choose ~3 

F( )= sinh( ef/O 2 ),/2 

( 02) '/2 
(65) 

and with the above choice the interaction Lagrangian density becomes 

+ i 
~ i n , = i e ~ / 7 ~ A . q ~ - - •  74eg'Y 4' 

( ' )  ( ) = •  ~ G - 7 4 q ~ ' y  74exp ---~-9 "/,qo'Y 4' (66) 

which is a possible form for our nonlinear interaction Lagrangian and we 

13As we shall see, this choice leads naturally to the use of coherent states for photons. 
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observe the natural emergence of coherent states for photons. For simplicity 
we shall henceforth consider the solution with the + sign in Equations (64) 
and (66). 

On examining Equation (66) we see that the coefficient of the spinor qJ 
has the structure of a Lorentz boost depending on the electromagnetic field 
~. The effect of this coefficient is such that under a Lorentz transformation 
the field 

(67) 

just undergoes a rotation and therefore the right-hand side of Equation (66) 
is Lorentz invariant. 

The above observation allows us to study another application of the 
above approach to the emission of soft photons in analogy with the emission 
of soft pions (Weinberg, 1970a, b; Brown, 1970). Let us consider a process 
involving the scattering of a charged particle q~ and describe it by an 
effective Lagrangian density 

~eff. = r (x)Tol~(X) (68) 

which reproduces the basic collision process in first Born approximation. 
Since the photon is associated with the spontaneous breaking of Lorentz 
symmetry we shall just assume rotational invariance for the above effective 
Lagrangian in the absence of electromagnetic interactions. 

The electromagnetic interaction may then be introduced by coupling 
photons in the effective Lagrangian Equation (68) so as to render it Lorentz 
invariant. This can be done by replacing q, by q,. That is, the S matrix for 
our basic collision process becomes (omitting inessential factors) 

where q is the momentum transfer m the basic process. The above of course 
is for collisions involving a charged spin-l/2 object. It is straightforward to 
consider either other spin particles or the presence of more charged par- 
ticles. We again observe that our results have no infrared divergences and 
depend on the vacuum expectation value of the electromagnetic field 
instead of the charge (Weinberg, 1970a, b; Brown, 1970). 
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If we take the vacuum expectation value of the above and employ 
translational invariance we get the correction to the basic collision process 
due to the exchange of virtual soft photons, which we may write schemati- 
cally as 

0) 0 
The actual evaluation of the above presents some difficulties (Weinberg, 
1970a, b; Brown, 1970). 

5. CONCLUSIONS 

In the Introduction we have exhibited the motivation for the nonlinear 
constraint on the electromagnetic field given by Equation (1). Essentially 
the advantage of such a choice of constraint (or "gauge") is that the 
unphysical degrees of freedom for the electromagnetic field, which would 
otherwise be eliminated because of gauge invariance, are used so as to 
describe the charged field (particle). Such a constraint is possible for the 
electromagnetic field to the extent that there exists a solution to the 
corresponding classical equations of motion for a charged particle in that 
field (Dirac, 1951, 1952, 1954; Nambu, 1968). 

As a starting point we then implemented the usual gauge-invariant 
Lagrangian density for the electromagnetic field, Equation (7), with the 
constraint Equation (1) and examined the solutions to the resulting nonlin- 
ear equations of motion. We found two types of solutions: a time-dependent 
one associated with "small" (with respect to f~ )  fields corresponding to 
photons and a "large" static spherically symmetric one associated with 
charged particles. 

The static solution resembles a spherical charged shell whose radius is 
just the classical radius of a charged particle. Further, our constraint, 
although destroying gauge invariance, leads to the existence of a topological, 
trivially conserved, current and charge. We find that our static solution has 
a nonzero topological charge which is proportional to the charged-particle 
number, that is the charge, thus indicating that charge conservation may be 
connected to a topological conservation law. 

On then checking the stability of our extended solution, we first find it 
to be stable for time-independent spherically symmetric perturbations. 
General time-dependent infinitesimal fluctuations about our solution were 
then examined. For such a case the stability criterion is that infinitesimal 
fluctuations which are well behaved (small) in all space are not associated 
with complex eigenfrequencies, otherwise they would "explode" in time. We 
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found, by examining the continuity of the solution in a singularity-free 
space (inside the "shell") to the solution in the presence of a charge 
associated potential (outside the "shell"), that the perturbation is either not 
allowed or leads to real eigenfrequencies implying that the solution is stable. 
We feel such an analysis of stability to be equivalent to the search for the 
so-called "run-away" solutions in classical electrodynamics, stability imply- 
ing their absence. Concerning small perturbations to our solution we also 
observed that a magnetic dipole moment can easily be accommodated as a 
first-order quantum effect. The existence of such a magnetic dipole solution 
is closely associated with the introduction of an additional direction in 
space, which is expected to be related to the spin orientation. 

In order to study the equivalence of our approach, once quantized, with 
the usual quantum electrodynamics, we observe that according to our 
approach the charged particles are also solutions to our equations of 
motion. Therefore there is no need to introduce new fields; rather the 
problem is to separate and discuss the interaction between "small" oscilla- 
tions about a vacuum, satisfying linear equations, and static nonperturba- 
tive solutions satisfying the full nonlinear equations (8). 

We have then constructed the charged-particle field operators in terms 
of the classical static solution and quantized small oscillations. In an 
idealized point particle limit, employing a necessarily heuristic procedure, 
we have obtained the charged-field equation of motion and the lowest-order 
corrections to the field equations for the quantized electromagnetic field due 
to the presence of charge. We further verified that in general the charged 
scalar field satisfies the correct commutation relations and that our results 
are equivalent to the usual ones for the electromagnetic interaction and 
equation of motion for a charged scalar field. 

Since the magnetic dipole moment solution to our equations of motion 
introduces an additional direction in space, we have illustrated how one can 
then also construct a field satisfying anticommutation relations without 
explicitly identifying the diverse spinor components. Quantum fluctuations 
about the charged magnetic dipole solution can also be examined directly 
and the lowest-order quantum corrections evaluated. Agreement with the 
usual quantum electrodynamical value for g - 2  is obtained. 

Another remarkable property of our constraint Equation (1) is that 
when it is used within the context of the usual quantum electrodynamics (or 
if we wish in a theory where the charged-particle solutions and their 
associated field operators have been separated from the electromagnetic 
field) the photon is associated with the spontaneous breaking of Lorentz 
symmetry. It is then found that the emission of soft photons does not 
exhibit any infrared divergences. We observe, however, that in a perturba- 
tion expansion the final results are the usual Lorentz-invariant ones since 
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for the free electromagnetic field Equation (1) is just a gauge choice in an 
otherwise gauge-invariant theory. 

The properties of our approach under conformal transformations may 
also be considered (Righi and Venturi, 1980). In particular one may replace 

by a field and interpret such a field as the additional component of a 
five-vector electromagnetic field. Correspondingly Minkowski space acquires 
an extra space dimension which may be related to either the radius or some 
internal coordinate conjugate to the rest mass of our solution. One is then 
naturally led to a Lagrangian density which is manifestly invariant under a 
larger conformal group P0(5,2). In this case ~-  is interpreted as the 
vacuum expectation value, associated with the spontaneous breaking of the 
conformal group, of the additional component of the five-vector electromag- 
netic field. Such a group is of interest since it has led to a theoretical 
expression for the fine-structure constant which agrees with the present 
experimental value to within one part per million (Righi and Venturi, 1980; 
Wyler, 1969, 1971). Therefore because of the apparent topological origin of 
change, one of the points worth investigating is the topological structure of 
our solutions; this may be more easily formulated in Euclidean rather than 
Minkowski space. 

To conclude, it appears that our approach may lead to a formulation of 
quantum electrodynamics which while retaining the positive results of the 
usual approach is not plagued by divergence difficulties. 
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